1 Estimate a model for sociology

save(socdef_df, file="/Users/anuschka/Documents/labjournal/data/socdef_df.RData")
#dependent
snet <- sienaDependent(soc_net_array)

### Step 1: define data
#gender
gender <- as.numeric(socdef_df$gender=="female")
gender <- coCovar(gender)

#Kardashian Index
#ki <- as.numeric(socdef_df$ki)
#ki <- coCovar(ki)

#Ethnicity
dutch <- as.numeric(socdef_df$dutch)
dutch <- coCovar(dutch)

#Twitter dummy as control variable
twitter_dum <- (socdef_df$twitter_dum)
twitter_dum <- coCovar(twitter_dum)

#Twitter followercount
followers <- as.numeric(socdef_df$followers)
followers <- coCovar(followers)



#year first pub
# soc_staff_cit %>% group_by(gs_id) %>%
#   mutate(pub_first = min(year)) %>% 
#   select(c("gs_id", "pub_first")) %>%
#   distinct(gs_id, pub_first, .keep_all = TRUE) -> firstpub_df
# 
# socdef_df <- left_join(socdef_df, firstpub_df)
# 
# #if no publication yet, set pub_first op 2023
# socdef_df %>% mutate(pub_first = replace_na(pub_first, 2023)) -> socdef_df

pub_first <-  coCovar(socdef_df$pub_first)
mydata <- sienaDataCreate(snet, gender, dutch, pub_first, twitter_dum, followers)
### Step 2: create effects structure
myeffs <- getEffects(mydata)
effectsDocumentation(myeffs)
### Step 3: get initial description
print01Report(mydata, modelname = "/Users/anuschka/Documents/labjournal/results/soc_report_twit")
### Step4: specify model with structural effects
myeffs <- includeEffects(myeffs, degPlus) #some publish a lot, some not. (interpretation: talent/luck? )
myeffs <- includeEffects(myeffs, transTriads)
myeffs <- includeEffects(myeffs, absDiffX, interaction1 = "followers")
### Step5 estimate
myAlgorithm <- sienaAlgorithmCreate(projname = "soc_report_twit")
(ans <- siena07(myAlgorithm, data = mydata, effects = myeffs))
# (the outer parentheses lead to printing the obtained result on the screen) if necessary, estimate
# further
(ans <- siena07(myAlgorithm, data = mydata, effects = myeffs, prevAns = ans))
#Save the last model since it has the lowest maximum convergence ratio. 
save(ans, file="/Users/anuschka/Documents/labjournal/results/soc_model_struc_twit")
#> Estimates, standard errors and convergence t-ratios
#> 
#>                                      Estimate   Standard   Convergence 
#>                                                   Error      t-ratio   
#> 
#> Rate parameters: 
#>   0.1      Rate parameter period 1    1.5523  ( 0.4264   )             
#>   0.2      Rate parameter period 2    2.4902  ( 0.7085   )             
#> 
#> Other parameters: 
#>   1.  eval degree (density)          -2.7680  ( 0.3799   )    0.0517   
#>   2.  eval transitive triads          0.5974  ( 0.2531   )   -0.0132   
#>   3.  eval degree act+pop             0.0899  ( 0.0382   )    0.0192   
#>   4.  eval followers abs. difference  0.0002  ( 0.0002   )    0.0324   
#> 
#> Overall maximum convergence ratio:    0.1159 
#> 
#> 
#> Total of 2496 iteration steps.
#> 
#> Covariance matrix of estimates (correlations below diagonal)
#> 
#>        0.144        0.025       -0.012        0.000
#>        0.262        0.064       -0.006        0.000
#>       -0.842       -0.628        0.001        0.000
#>       -0.332        0.001        0.092        0.000
#> 
#> Derivative matrix of expected statistics X by parameters:
#> 
#>       74.829       56.534     2327.748    61601.966
#>       56.563       74.738     2113.136    46002.509
#>      858.691      800.121    30546.116   678027.382
#>    32874.337    24052.368   973634.455 71698108.953
#> 
#> Covariance matrix of X (correlations below diagonal):
#> 
#> 1.019690e+02 8.947000e+01 3.349854e+03 8.872810e+04
#> 8.190000e-01 1.170820e+02 3.414132e+03 7.943304e+04
#> 9.470000e-01 9.010000e-01 1.225888e+05 2.838908e+06
#> 6.830000e-01 5.710000e-01 6.300000e-01 1.654947e+08

Similar effect bc of course we did not add the covariates yet. All structural effects are significant.

myeffs1 <- getEffects(mydata)
myeffs1 <- includeEffects(myeffs1, degPlus) 
myeffs1 <- includeEffects(myeffs1, transTriads)
myeffs1 <- includeEffects(myeffs1, absDiffX, interaction1 = "followers")
myeffs1 <- includeEffects(myeffs1, sameX, interaction1 = "dutch")
myeffs1 <- includeEffects(myeffs1, absDiffX, interaction1 = "pub_first")
#myeffs1 <- includeEffects(myeffs1, sameX, interaction1 = "twitter_dum")
myeffs1 <- includeEffects(myeffs1, sameX, interaction1 = "gender")
(ans1 <- siena07(myAlgorithm, data = mydata, effects = myeffs1, prevAns = ans))
#Save the last model since it has the lowest maximum convergence ratio. 
save(ans1, file="/Users/anuschka/Documents/labjournal/results/soc_model_cov1_twit")
#> Estimates, standard errors and convergence t-ratios
#> 
#>                                      Estimate   Standard   Convergence 
#>                                                   Error      t-ratio   
#> 
#> Rate parameters: 
#>   0.1      Rate parameter period 1    1.5922  ( 0.4546   )             
#>   0.2      Rate parameter period 2    2.5406  ( 0.6931   )             
#> 
#> Other parameters: 
#>   1.  eval degree (density)          -3.0969  ( 0.5756   )   -0.0011   
#>   2.  eval transitive triads          0.6016  ( 0.2678   )    0.0278   
#>   3.  eval degree act+pop             0.0952  ( 0.0422   )    0.0045   
#>   4.  eval same gender               -0.0649  ( 0.2591   )   -0.0009   
#>   5.  eval same dutch                 0.2363  ( 0.3407   )   -0.0142   
#>   6.  eval pub_first abs. difference  0.0112  ( 0.0187   )    0.0098   
#>   7.  eval followers abs. difference  0.0002  ( 0.0002   )   -0.0251   
#> 
#> Overall maximum convergence ratio:    0.0886 
#> 
#> 
#> Total of 2552 iteration steps.
#> 
#> Covariance matrix of estimates (correlations below diagonal)
#> 
#>        0.331        0.036       -0.017       -0.026       -0.133       -0.003        0.000
#>        0.235        0.072       -0.007       -0.001       -0.019        0.001        0.000
#>       -0.694       -0.623        0.002       -0.001        0.005        0.000        0.000
#>       -0.171       -0.020       -0.066        0.067        0.002        0.001        0.000
#>       -0.676       -0.211        0.365        0.018        0.116        0.000        0.000
#>       -0.325        0.175       -0.163        0.121        0.037        0.000        0.000
#>       -0.281        0.050        0.045       -0.035        0.091        0.150        0.000
#> 
#> Derivative matrix of expected statistics X by parameters:
#> 
#>       75.393       54.940     2327.248       72.590      102.251     1593.519    56706.914
#>       57.019       72.610     2102.094       58.155       80.422     1158.604    41734.819
#>      865.427      771.476    30363.712      844.537     1122.169    18694.872   640384.632
#>       32.865       25.347     1016.528       59.454       44.546      632.912    28798.710
#>       54.505       39.346     1591.890       52.614       94.303     1107.422    40138.363
#>      795.335      586.434    25552.691      701.190     1047.813    22087.280   524447.281
#>    31789.567    21456.392   937879.704    33622.457    42047.397   598886.797 72574615.150
#> 
#> Covariance matrix of X (correlations below diagonal):
#> 
#> 1.203200e+02 1.061660e+02 3.988914e+03 1.193750e+02 1.664840e+02 2.539889e+03 9.208920e+04
#> 8.390000e-01 1.331870e+02 4.003745e+03 1.073590e+02 1.502070e+02 2.248103e+03 8.146286e+04
#> 9.560000e-01 9.120000e-01 1.446818e+05 3.917482e+03 5.372742e+03 8.628509e+04 3.015680e+06
#> 8.370000e-01 7.150000e-01 7.920000e-01 1.691130e+02 1.671320e+02 2.377767e+03 1.013753e+05
#> 9.200000e-01 7.890000e-01 8.560000e-01 7.790000e-01 2.719810e+02 3.423169e+03 1.281729e+05
#> 9.250000e-01 7.780000e-01 9.070000e-01 7.310000e-01 8.300000e-01 6.261579e+04 1.810544e+06
#> 6.540000e-01 5.500000e-01 6.180000e-01 6.080000e-01 6.060000e-01 5.640000e-01 1.646616e+08
myeffs2 <- getEffects(mydata)
myeffs2 <- includeEffects(myeffs2, degPlus) 
myeffs2 <- includeEffects(myeffs2, transTriads)
myeffs2 <- includeEffects(myeffs2, altX, interaction1 = "followers")
myeffs2 <- includeEffects(myeffs2, sameX, interaction1 = "dutch")
myeffs2 <- includeEffects(myeffs2, absDiffX, interaction1 = "pub_first")
#myeffs2 <- includeEffects(myeffs2, sameX, interaction1 = "twitter_dum")
myeffs2 <- includeEffects(myeffs2, sameX, interaction1 = "gender")
(ans2 <- siena07(myAlgorithm, data = mydata, effects = myeffs2, prevAns = ans1))
#Save the last model since it has the lowest maximum convergence ratio. 
save(ans2, file="/Users/anuschka/Documents/labjournal/results/soc_model_cov2_twit")
#> Estimates, standard errors and convergence t-ratios
#> 
#>                                      Estimate   Standard   Convergence 
#>                                                   Error      t-ratio   
#> 
#> Rate parameters: 
#>   0.1      Rate parameter period 1    1.5836  ( 0.4446   )             
#>   0.2      Rate parameter period 2    2.4934  ( 0.7225   )             
#> 
#> Other parameters: 
#>   1.  eval degree (density)          -3.0943  ( 0.5877   )   0.0812    
#>   2.  eval transitive triads          0.5839  ( 0.2708   )   0.0777    
#>   3.  eval degree act+pop             0.1003  ( 0.0427   )   0.0808    
#>   4.  eval same gender               -0.0550  ( 0.2561   )   0.0638    
#>   5.  eval same dutch                 0.2676  ( 0.3455   )   0.0843    
#>   6.  eval pub_first abs. difference  0.0143  ( 0.0201   )   0.0738    
#>   7.  eval followers alter            0.0004  ( 0.0003   )   0.0013    
#> 
#> Overall maximum convergence ratio:    0.0881 
#> 
#> 
#> Total of 2750 iteration steps.
#> 
#> Covariance matrix of estimates (correlations below diagonal)
#> 
#>        0.345        0.041       -0.018       -0.032       -0.132       -0.005        0.000
#>        0.259        0.073       -0.007       -0.003       -0.027        0.001        0.000
#>       -0.713       -0.610        0.002        0.000        0.005        0.000        0.000
#>       -0.211       -0.039       -0.041        0.066        0.002        0.001        0.000
#>       -0.652       -0.290        0.357        0.019        0.119        0.000        0.000
#>       -0.384        0.129       -0.081        0.132        0.057        0.000        0.000
#>       -0.221        0.091        0.057        0.004        0.020        0.330        0.000
#> 
#> Derivative matrix of expected statistics X by parameters:
#> 
#>       73.755       56.723     2273.134       74.653      103.747     1501.381    -4582.017
#>       57.793       73.478     2110.739       63.145       83.949     1128.141    -4634.246
#>      837.234      767.043    29297.561      865.045     1126.664    17316.134   -66442.202
#>       35.615       29.843     1123.049       63.654       49.941      670.470      533.056
#>       55.374       43.214     1632.926       55.676       98.863     1078.684    -2649.541
#>      725.122      538.161    22614.073      680.713      981.912    20052.859  -123637.683
#>     4351.323     2103.656   102729.284     5811.749     6801.602   -19447.777 21159065.778
#> 
#> Covariance matrix of X (correlations below diagonal):
#> 
#>      113.680      100.012     3694.905      118.948      160.725     2262.289    -4852.812
#>        0.841      124.304     3709.183      110.725      141.890     1947.076    -3070.529
#>        0.951        0.913   132684.027     3911.455     5059.158    74377.015  -163485.060
#>        0.848        0.755        0.816      173.156      167.676     2268.632      974.241
#>        0.914        0.771        0.842        0.772      272.120     3092.556    -4878.885
#>        0.907        0.746        0.873        0.737        0.801    54741.251  -224160.575
#>       -0.077       -0.047       -0.076        0.013       -0.050       -0.163 34697137.157

2 RSiena Data Science

rm(list=ls())
save(datadef_df, file="/Users/anuschka/Documents/labjournal/data/datadef_df.RData")
#dependent
dnet <- sienaDependent(dnet_array)

### Step 1: define data
#gender
gender <- as.numeric(datadef_df$gender=="female")
gender <- coCovar(gender)

#Kardashian Index
#ki <- as.numeric(datadef_df$ki)
#ki <- coCovar(ki)

#Ethnicity
dutch <- as.numeric(datadef_df$dutch)
dutch <- coCovar(dutch)

#Twitter dummy as control variable
twitter_dum <- (datadef_df$twitter_dum)
twitter_dum <- coCovar(twitter_dum)

#Twitter followers
followers <- as.numeric(datadef_df$followers)
followers <- coCovar(followers)

# #year first pub
# data_staff_cit %>% group_by(gs_id) %>%
#   mutate(pub_first = min(year)) %>% 
#   select(c("gs_id", "pub_first")) %>%
#   distinct(gs_id, pub_first, .keep_all = TRUE) -> firstpub_df1
# 
# datadef_df <- left_join(datadef_df, firstpub_df1)
# 
# #if no publication yet, set pub_first op 2023
# datadef_df %>% mutate(pub_first = replace_na(pub_first, 2023)) -> datadef_df

pub_first <-  coCovar(datadef_df$pub_first)
mydata <- sienaDataCreate(dnet, gender, followers, dutch, pub_first, twitter_dum)
### Step 2: create effects structure
myeff <- getEffects(mydata)
effectsDocumentation(myeff)
### Step 3: get initial description
print01Report(mydata, modelname = "/Users/anuschka/Documents/labjournal/results/data_report_twit")
### Step4: specify model
myeff <- includeEffects(myeff, degPlus) 
myeff <- includeEffects(myeff, transTriads)
myeff <- includeEffects(myeff, absDiffX, interaction1 = "followers")
### Step5 estimate
myAlgorithm <- sienaAlgorithmCreate(projname = "data_report_twit")
(ans <- siena07(myAlgorithm, data = mydata, effects = myeff))
# (the outer parentheses lead to printing the obtained result on the screen) if necessary, estimate
# further
#(ans <- siena07(myAlgorithm, data = mydata, effects = myeff, prevAns = ans))
save(ans, file="/Users/anuschka/Documents/labjournal/results/data_model_struc_twit")
#> Estimates, standard errors and convergence t-ratios
#> 
#>                                      Estimate   Standard   Convergence 
#>                                                   Error      t-ratio   
#> 
#> Rate parameters: 
#>   0.1      Rate parameter period 1    1.5924  ( 0.4342   )             
#>   0.2      Rate parameter period 2    3.0146  ( 0.6705   )             
#> 
#> Other parameters: 
#>   1.  eval degree (density)          -2.3438  ( 0.3280   )   0.0187    
#>   2.  eval transitive triads          1.2607  ( 0.2165   )   0.0033    
#>   3.  eval degree act+pop             0.0329  ( 0.0338   )   0.0064    
#>   4.  eval followers abs. difference  0.0000  ( 0.0001   )   0.0410    
#> 
#> Overall maximum convergence ratio:    0.0486 
#> 
#> 
#> Total of 2012 iteration steps.
#> 
#> Covariance matrix of estimates (correlations below diagonal)
#> 
#>        0.108        0.004       -0.009        0.000
#>        0.063        0.047       -0.003        0.000
#>       -0.854       -0.397        0.001        0.000
#>       -0.352       -0.011        0.143        0.000
#> 
#> Derivative matrix of expected statistics X by parameters:
#> 
#> 8.133700e+01 4.866900e+01 2.294112e+03 7.104186e+04
#> 6.806500e+01 1.252330e+02 2.856483e+03 6.124563e+04
#> 8.908750e+02 8.827480e+02 3.288545e+04 7.442331e+05
#> 3.758213e+04 2.203888e+04 9.908670e+05 1.392190e+08
#> 
#> Covariance matrix of X (correlations below diagonal):
#> 
#> 1.338790e+02 1.878760e+02 5.266452e+03 1.216372e+05
#> 7.410000e-01 4.795450e+02 1.012903e+04 1.894994e+05
#> 8.970000e-01 9.110000e-01 2.576368e+05 4.960728e+06
#> 5.550000e-01 4.570000e-01 5.160000e-01 3.584187e+08
myeffd1 <- getEffects(mydata)
myeffd1 <- includeEffects(myeffd1, degPlus) #some publish a lot, some not. (interpretation: talent/luck? )
myeffd1 <- includeEffects(myeffd1, transTriads)
myeffd1 <- includeEffects(myeffd1, absDiffX, interaction1 = "followers")
myeffd1 <- includeEffects(myeffd1, sameX, interaction1 = "dutch")
myeffd1 <- includeEffects(myeffd1, absDiffX, interaction1 = "pub_first")
#myeffd1 <- includeEffects(myeffd1, sameX, interaction1 = "twitter_dum")
myeffd1 <- includeEffects(myeffd1, sameX, interaction1 = "gender")
(ansd1 <- siena07(myAlgorithm, data = mydata, effects = myeffd1, prevAns = ans))
#Save the last model since it has the lowest maximum convergence ratio. 
save(ansd1, file="/Users/anuschka/Documents/labjournal/results/data_model_cov1_twit")
#> Estimates, standard errors and convergence t-ratios
#> 
#>                                      Estimate   Standard   Convergence 
#>                                                   Error      t-ratio   
#> 
#> Rate parameters: 
#>   0.1      Rate parameter period 1    1.5968  ( 0.4346   )             
#>   0.2      Rate parameter period 2    2.9903  ( 0.6729   )             
#> 
#> Other parameters: 
#>   1.  eval degree (density)          -2.1508  ( 0.3814   )    0.0310   
#>   2.  eval transitive triads          1.2449  ( 0.2162   )   -0.0318   
#>   3.  eval degree act+pop             0.0366  ( 0.0341   )    0.0039   
#>   4.  eval same gender               -0.0450  ( 0.2118   )    0.0312   
#>   5.  eval followers abs. difference  0.0000  ( 0.0002   )   -0.0214   
#>   6.  eval same dutch                -0.0517  ( 0.2003   )    0.0413   
#>   7.  eval pub_first abs. difference -0.0152  ( 0.0119   )    0.0198   
#> 
#> Overall maximum convergence ratio:    0.1006 
#> 
#> 
#> Total of 2389 iteration steps.
#> 
#> Covariance matrix of estimates (correlations below diagonal)
#> 
#>        0.145        0.002       -0.009       -0.022        0.000       -0.022       -0.001
#>        0.026        0.047       -0.003        0.003        0.000        0.001        0.000
#>       -0.725       -0.373        0.001        0.000        0.000        0.000        0.000
#>       -0.276        0.055       -0.063        0.045        0.000       -0.004        0.000
#>       -0.324        0.088        0.074        0.004        0.000        0.000        0.000
#>       -0.283        0.025        0.037       -0.089        0.012        0.040        0.000
#>       -0.219       -0.111       -0.049        0.028        0.083       -0.097        0.000
#> 
#> Derivative matrix of expected statistics X by parameters:
#> 
#> 8.466500e+01 5.091200e+01 2.425062e+03 9.903300e+01 8.136578e+04 9.630800e+01 1.682442e+03
#> 6.940000e+01 1.282500e+02 2.938579e+03 8.369600e+01 6.648115e+04 7.787400e+01 1.536368e+03
#> 9.133740e+02 8.873710e+02 3.370918e+04 1.077350e+03 8.577978e+05 1.028735e+03 1.908679e+04
#> 5.118200e+01 3.307600e+01 1.495108e+03 1.063810e+02 4.890596e+04 6.239200e+01 1.006226e+03
#> 3.744450e+04 1.845711e+04 9.835460e+05 4.466568e+04 1.381984e+08 4.098145e+04 6.683628e+05
#> 4.792000e+01 2.735500e+01 1.374125e+03 6.235300e+01 4.714052e+04 9.926200e+01 9.869880e+02
#> 8.312970e+02 5.863450e+02 2.531296e+04 9.515030e+02 7.390169e+05 9.938940e+02 2.989596e+04
#> 
#> Covariance matrix of X (correlations below diagonal):
#> 
#> 1.317890e+02 1.832150e+02 5.147083e+03 1.596940e+02 1.263302e+05 1.493700e+02 2.741700e+03
#> 7.230000e-01 4.875590e+02 1.008829e+04 2.362960e+02 2.046990e+05 2.066350e+02 4.059730e+03
#> 8.900000e-01 9.070000e-01 2.539187e+05 6.332508e+03 5.223704e+06 5.849738e+03 1.119591e+05
#> 8.160000e-01 6.280000e-01 7.380000e-01 2.903430e+02 1.567869e+05 1.932550e+02 3.290856e+03
#> 5.650000e-01 4.760000e-01 5.330000e-01 4.730000e-01 3.786976e+08 1.429655e+05 2.619945e+06
#> 8.260000e-01 5.940000e-01 7.370000e-01 7.200000e-01 4.660000e-01 2.482060e+02 3.133068e+03
#> 8.380000e-01 6.450000e-01 7.790000e-01 6.770000e-01 4.720000e-01 6.970000e-01 8.130003e+04
myeffd2a <- getEffects(mydata)
myeffd2a <- includeEffects(myeffd2a, degPlus) 
myeffd2a <- includeEffects(myeffd2a, transTriads)
myeffd2a <- includeEffects(myeffd2a, altX, interaction1 = "followers")
(ansd2a <- siena07(myAlgorithm, data = mydata, effects = myeffd2, prevAns = ansd1))
#Save the last model since it has the lowest maximum convergence ratio. 
save(ansd2a, file="/Users/anuschka/Documents/labjournal/results/data_model_cov2a_twit")
#> Estimates, standard errors and convergence t-ratios
#> 
#>                                      Estimate   Standard   Convergence 
#>                                                   Error      t-ratio   
#> 
#> Rate parameters: 
#>   0.1      Rate parameter period 1    1.5839  ( 0.4501   )             
#>   0.2      Rate parameter period 2    3.0342  ( 0.6894   )             
#> 
#> Other parameters: 
#>   1.  eval degree (density)          -2.1672  ( 0.3634   )   -0.0302   
#>   2.  eval transitive triads          1.2493  ( 0.2045   )   -0.0728   
#>   3.  eval degree act+pop             0.0364  ( 0.0338   )   -0.0589   
#>   4.  eval same gender               -0.0479  ( 0.2018   )   -0.0240   
#>   5.  eval followers alter            0.0001  ( 0.0002   )    0.0400   
#>   6.  eval same dutch                -0.0512  ( 0.2106   )   -0.0042   
#>   7.  eval pub_first abs. difference -0.0149  ( 0.0129   )   -0.0224   
#> 
#> Overall maximum convergence ratio:    0.1002 
#> 
#> 
#> Total of 2550 iteration steps.
#> 
#> Covariance matrix of estimates (correlations below diagonal)
#> 
#>        0.132        0.005       -0.009       -0.018        0.000       -0.024       -0.001
#>        0.062        0.042       -0.002       -0.002        0.000        0.002        0.000
#>       -0.731       -0.352        0.001        0.000        0.000        0.000        0.000
#>       -0.247       -0.040       -0.047        0.041        0.000       -0.006        0.000
#>        0.092       -0.043       -0.021        0.008        0.000        0.000        0.000
#>       -0.309        0.041        0.003       -0.130       -0.152        0.044        0.000
#>       -0.242       -0.094       -0.105        0.022        0.012       -0.016        0.000
#> 
#> Derivative matrix of expected statistics X by parameters:
#> 
#>       96.531       65.789     2839.712      112.867    -4842.483      110.775     1965.492
#>       77.118      142.962     3251.003       96.731     2215.733       87.019     1722.012
#>     1030.492     1013.667    37502.201     1223.689   -37335.738     1167.769    21929.612
#>       59.222       46.474     1805.745      117.852    -2814.642       73.933     1221.061
#>    -1194.085    -2509.622   -67897.343    -2850.939 46620940.978     4265.552   -41353.423
#>       55.536       37.332     1614.020       70.144      283.875      108.627     1142.546
#>     1011.237      824.404    31397.759     1168.527   -75090.257     1177.215    32379.889
#> 
#> Covariance matrix of X (correlations below diagonal):
#> 
#>      149.657      201.565     5702.601      179.999     -820.434      168.054     3161.682
#>        0.727      513.089    10646.119      262.786     1762.386      225.856     4598.609
#>        0.898        0.906   269378.473     7033.376   -55771.999     6317.264   125009.746
#>        0.834        0.658        0.768      311.300    -4753.790      212.387     3819.499
#>       -0.007        0.008       -0.011       -0.027 99222419.672     3133.059  -100343.441
#>        0.829        0.602        0.734        0.726        0.019      274.634     3593.342
#>        0.865        0.680        0.806        0.725       -0.034        0.726    89196.126
myeffd2 <- getEffects(mydata)
myeffd2 <- includeEffects(myeffd2, degPlus) 
myeffd2 <- includeEffects(myeffd2, transTriads)
myeffd2 <- includeEffects(myeffd2, altX, interaction1 = "followers")
myeffd2 <- includeEffects(myeffd2, sameX, interaction1 = "dutch")
myeffd2 <- includeEffects(myeffd2, absDiffX, interaction1 = "pub_first")
#myeffd2 <- includeEffects(myeffd2, sameX, interaction1 = "twitter_dum")
myeffd2 <- includeEffects(myeffd2, sameX, interaction1 = "gender")
(ansd2 <- siena07(myAlgorithm, data = mydata, effects = myeffd2, prevAns = ansd1))
#Save the last model since it has the lowest maximum convergence ratio. 
save(ansd2, file="/Users/anuschka/Documents/labjournal/results/data_model_cov2_twit")
#> Estimates, standard errors and convergence t-ratios
#> 
#>                                      Estimate   Standard   Convergence 
#>                                                   Error      t-ratio   
#> 
#> Rate parameters: 
#>   0.1      Rate parameter period 1    1.5603  ( 0.4058   )             
#>   0.2      Rate parameter period 2    3.0125  ( 0.6737   )             
#> 
#> Other parameters: 
#>   1.  eval degree (density)          -2.1450  ( 0.3680   )    0.0551   
#>   2.  eval transitive triads          1.2515  ( 0.2246   )    0.0130   
#>   3.  eval degree act+pop             0.0362  ( 0.0347   )    0.0311   
#>   4.  eval same gender               -0.0548  ( 0.2077   )   -0.0160   
#>   5.  eval followers alter            0.0001  ( 0.0002   )   -0.0121   
#>   6.  eval same dutch                -0.0650  ( 0.2015   )    0.0213   
#>   7.  eval pub_first abs. difference -0.0152  ( 0.0123   )    0.0544   
#> 
#> Overall maximum convergence ratio:    0.1298 
#> 
#> 
#> Total of 2581 iteration steps.
#> 
#> Covariance matrix of estimates (correlations below diagonal)
#> 
#>        0.135        0.000       -0.009       -0.023        0.000       -0.022       -0.001
#>       -0.005        0.050       -0.003       -0.001        0.000        0.005        0.000
#>       -0.717       -0.369        0.001        0.000        0.000        0.000        0.000
#>       -0.303       -0.020       -0.033        0.043        0.000       -0.001        0.000
#>       -0.015        0.039       -0.013        0.027        0.000        0.000        0.000
#>       -0.302        0.119       -0.012       -0.029       -0.082        0.041        0.000
#>       -0.197       -0.014       -0.106        0.054        0.141       -0.138        0.000
#> 
#> Derivative matrix of expected statistics X by parameters:
#> 
#>       84.171       51.346     2402.453       96.072    -4967.099       98.418     1696.755
#>       68.536      122.314     2827.317       83.713    -1694.635       75.314     1453.673
#>      910.780      880.514    33037.362     1054.028   -30173.021     1047.369    19293.264
#>       50.471       34.201     1464.750      105.509    -4088.447       62.394     1005.662
#>     -354.689    -3640.509   -47601.636    -1147.868 39942504.726     2037.584  -114080.782
#>       47.358       26.061     1307.595       57.640     -982.981      101.096      997.217
#>      840.540      588.008    25571.317      951.528  -162536.299     1035.655    30237.141
#> 
#> Covariance matrix of X (correlations below diagonal):
#> 
#>      136.490      185.109     5253.190      162.255     1906.494      153.062     2860.421
#>        0.728      473.669     9881.528      235.749     6551.129      206.929     4094.380
#>        0.899        0.908   250126.502     6343.140   174637.788     5814.775   114835.946
#>        0.812        0.634        0.742      292.269      181.565      194.131     3420.492
#>        0.017        0.031        0.036        0.001 93457572.299     5367.309  -214395.557
#>        0.823        0.597        0.730        0.713        0.035      253.706     3212.630
#>        0.837        0.643        0.785        0.684       -0.076        0.689    85609.460
LS0tCnRpdGxlOiAiUiBTaWVuYSIKYXV0aG9yOiAiQW51c2Noa2EgUGVlbGVuIgpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiCm91dHB1dDogCiAgaHRtbF9kb2N1bWVudDoKICAgICBjb2RlX2ZvbGRpbmc6ICJoaWRlIgplZGl0b3Jfb3B0aW9uczogCiAgbWFya2Rvd246IAogICAgd3JhcDogNzIKLS0tCgpgYGB7ciB3YXJuaW5nPUZBTFNFLCBnbG9iYWxzZXR0aW5ncywgZWNobz1GQUxTRSwgcmVzdWx0cz0naGlkZSd9CmxpYnJhcnkoa25pdHIpCgprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUpCm9wdHNfY2h1bmskc2V0KHRpZHkub3B0cz1saXN0KHdpZHRoLmN1dG9mZj0xMDApLHRpZHk9VFJVRSwgd2FybmluZyA9IEZBTFNFLCBtZXNzYWdlID0gRkFMU0UsY29tbWVudCA9ICIjPiIsIGNhY2hlPVRSVUUsIGNsYXNzLnNvdXJjZT1jKCJ0ZXN0IiksIGNsYXNzLm91dHB1dD1jKCJ0ZXN0MiIpKQpvcHRpb25zKHdpZHRoID0gMTAwKQpyZ2w6OnNldHVwS25pdHIoKQoKCgpjb2xvcml6ZSA8LSBmdW5jdGlvbih4LCBjb2xvcikge3NwcmludGYoIjxzcGFuIHN0eWxlPSdjb2xvcjogJXM7Jz4lczwvc3Bhbj4iLCBjb2xvciwgeCkgfQpgYGAKCmBgYHtyIGtsaXBweSwgZWNobz1GQUxTRSwgaW5jbHVkZT1UUlVFfQprbGlwcHk6OmtsaXBweShwb3NpdGlvbiA9IGMoJ3RvcCcsICdyaWdodCcpKQoja2xpcHB5OjprbGlwcHkoY29sb3IgPSAnZGFya3JlZCcpCiNrbGlwcHk6OmtsaXBweSh0b29sdGlwX21lc3NhZ2UgPSAnQ2xpY2sgdG8gY29weScsIHRvb2x0aXBfc3VjY2VzcyA9ICdEb25lJykKYGBgCgpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KGVjaG8gPSBUUlVFKQpgYGAKCmBgYHtyLCBlY2hvPUZBTFNFfQpsaWJyYXJ5KFJTaWVuYSkKbGlicmFyeSh0aWR5dmVyc2UpCmxvYWQoIi9Vc2Vycy9hbnVzY2hrYS9Eb2N1bWVudHMvbGFiam91cm5hbC9kYXRhL2RhdGFfbmV0X2FycmF5LlJEYXRhIikKbG9hZCgiL1VzZXJzL2FudXNjaGthL0RvY3VtZW50cy9sYWJqb3VybmFsL2RhdGEvc29jZGVmX25ldF9hcnJheS5SRGF0YSIpCmxvYWQoIi9Vc2Vycy9hbnVzY2hrYS9Eb2N1bWVudHMvbGFiam91cm5hbC9kYXRhL3NvY2RlZl9kZi5SRGF0YSIpCmxvYWQoIi9Vc2Vycy9hbnVzY2hrYS9Eb2N1bWVudHMvbGFiam91cm5hbC9kYXRhL2RhdGFkZWZfZGYuUkRhdGEiKQpsb2FkKCIvVXNlcnMvYW51c2Noa2EvRG9jdW1lbnRzL2xhYmpvdXJuYWwvZGF0YS9zb2NfdHdpdHRlcmluZm8uUkRhdGEiKQpgYGAKCiMgRXN0aW1hdGUgYSBtb2RlbCBmb3Igc29jaW9sb2d5CgoKCgpgYGB7cn0Kc2F2ZShzb2NkZWZfZGYsIGZpbGU9Ii9Vc2Vycy9hbnVzY2hrYS9Eb2N1bWVudHMvbGFiam91cm5hbC9kYXRhL3NvY2RlZl9kZi5SRGF0YSIpCmBgYAoKCmBgYHtyLCBldmFsPUZBTFNFfQojZGVwZW5kZW50CnNuZXQgPC0gc2llbmFEZXBlbmRlbnQoc29jX25ldF9hcnJheSkKCiMjIyBTdGVwIDE6IGRlZmluZSBkYXRhCiNnZW5kZXIKZ2VuZGVyIDwtIGFzLm51bWVyaWMoc29jZGVmX2RmJGdlbmRlcj09ImZlbWFsZSIpCmdlbmRlciA8LSBjb0NvdmFyKGdlbmRlcikKCiNLYXJkYXNoaWFuIEluZGV4CiNraSA8LSBhcy5udW1lcmljKHNvY2RlZl9kZiRraSkKI2tpIDwtIGNvQ292YXIoa2kpCgojRXRobmljaXR5CmR1dGNoIDwtIGFzLm51bWVyaWMoc29jZGVmX2RmJGR1dGNoKQpkdXRjaCA8LSBjb0NvdmFyKGR1dGNoKQoKI1R3aXR0ZXIgZHVtbXkgYXMgY29udHJvbCB2YXJpYWJsZQp0d2l0dGVyX2R1bSA8LSAoc29jZGVmX2RmJHR3aXR0ZXJfZHVtKQp0d2l0dGVyX2R1bSA8LSBjb0NvdmFyKHR3aXR0ZXJfZHVtKQoKI1R3aXR0ZXIgZm9sbG93ZXJjb3VudApmb2xsb3dlcnMgPC0gYXMubnVtZXJpYyhzb2NkZWZfZGYkZm9sbG93ZXJzKQpmb2xsb3dlcnMgPC0gY29Db3Zhcihmb2xsb3dlcnMpCgoKCiN5ZWFyIGZpcnN0IHB1YgojIHNvY19zdGFmZl9jaXQgJT4lIGdyb3VwX2J5KGdzX2lkKSAlPiUKIyAgIG11dGF0ZShwdWJfZmlyc3QgPSBtaW4oeWVhcikpICU+JSAKIyAgIHNlbGVjdChjKCJnc19pZCIsICJwdWJfZmlyc3QiKSkgJT4lCiMgICBkaXN0aW5jdChnc19pZCwgcHViX2ZpcnN0LCAua2VlcF9hbGwgPSBUUlVFKSAtPiBmaXJzdHB1Yl9kZgojIAojIHNvY2RlZl9kZiA8LSBsZWZ0X2pvaW4oc29jZGVmX2RmLCBmaXJzdHB1Yl9kZikKIyAKIyAjaWYgbm8gcHVibGljYXRpb24geWV0LCBzZXQgcHViX2ZpcnN0IG9wIDIwMjMKIyBzb2NkZWZfZGYgJT4lIG11dGF0ZShwdWJfZmlyc3QgPSByZXBsYWNlX25hKHB1Yl9maXJzdCwgMjAyMykpIC0+IHNvY2RlZl9kZgoKcHViX2ZpcnN0IDwtICBjb0NvdmFyKHNvY2RlZl9kZiRwdWJfZmlyc3QpCmBgYAoKYGBge3IsIGV2YWw9RkFMU0V9Cm15ZGF0YSA8LSBzaWVuYURhdGFDcmVhdGUoc25ldCwgZ2VuZGVyLCBkdXRjaCwgcHViX2ZpcnN0LCB0d2l0dGVyX2R1bSwgZm9sbG93ZXJzKQpgYGAKCmBgYHtyLGV2YWw9RkFMU0V9CiMjIyBTdGVwIDI6IGNyZWF0ZSBlZmZlY3RzIHN0cnVjdHVyZQpteWVmZnMgPC0gZ2V0RWZmZWN0cyhteWRhdGEpCmVmZmVjdHNEb2N1bWVudGF0aW9uKG15ZWZmcykKIyMjIFN0ZXAgMzogZ2V0IGluaXRpYWwgZGVzY3JpcHRpb24KcHJpbnQwMVJlcG9ydChteWRhdGEsIG1vZGVsbmFtZSA9ICIvVXNlcnMvYW51c2Noa2EvRG9jdW1lbnRzL2xhYmpvdXJuYWwvcmVzdWx0cy9zb2NfcmVwb3J0X3R3aXQiKQpgYGAKCgpgYGB7cixldmFsPUZBTFNFfQojIyMgU3RlcDQ6IHNwZWNpZnkgbW9kZWwgd2l0aCBzdHJ1Y3R1cmFsIGVmZmVjdHMKbXllZmZzIDwtIGluY2x1ZGVFZmZlY3RzKG15ZWZmcywgZGVnUGx1cykgI3NvbWUgcHVibGlzaCBhIGxvdCwgc29tZSBub3QuIChpbnRlcnByZXRhdGlvbjogdGFsZW50L2x1Y2s/ICkKbXllZmZzIDwtIGluY2x1ZGVFZmZlY3RzKG15ZWZmcywgdHJhbnNUcmlhZHMpCm15ZWZmcyA8LSBpbmNsdWRlRWZmZWN0cyhteWVmZnMsIGFic0RpZmZYLCBpbnRlcmFjdGlvbjEgPSAiZm9sbG93ZXJzIikKYGBgCgpgYGB7ciwgZXZhbD1GQUxTRX0KIyMjIFN0ZXA1IGVzdGltYXRlCm15QWxnb3JpdGhtIDwtIHNpZW5hQWxnb3JpdGhtQ3JlYXRlKHByb2puYW1lID0gInNvY19yZXBvcnRfdHdpdCIpCihhbnMgPC0gc2llbmEwNyhteUFsZ29yaXRobSwgZGF0YSA9IG15ZGF0YSwgZWZmZWN0cyA9IG15ZWZmcykpCiMgKHRoZSBvdXRlciBwYXJlbnRoZXNlcyBsZWFkIHRvIHByaW50aW5nIHRoZSBvYnRhaW5lZCByZXN1bHQgb24gdGhlIHNjcmVlbikgaWYgbmVjZXNzYXJ5LCBlc3RpbWF0ZQojIGZ1cnRoZXIKKGFucyA8LSBzaWVuYTA3KG15QWxnb3JpdGhtLCBkYXRhID0gbXlkYXRhLCBlZmZlY3RzID0gbXllZmZzLCBwcmV2QW5zID0gYW5zKSkKYGBgCgpgYGB7ciwgZXZhbD1GQUxTRX0KI1NhdmUgdGhlIGxhc3QgbW9kZWwgc2luY2UgaXQgaGFzIHRoZSBsb3dlc3QgbWF4aW11bSBjb252ZXJnZW5jZSByYXRpby4gCnNhdmUoYW5zLCBmaWxlPSIvVXNlcnMvYW51c2Noa2EvRG9jdW1lbnRzL2xhYmpvdXJuYWwvcmVzdWx0cy9zb2NfbW9kZWxfc3RydWNfdHdpdCIpCmBgYAoKYGBge3IsIGVjaG89RkFMU0V9CmxvYWQoIi9Vc2Vycy9hbnVzY2hrYS9Eb2N1bWVudHMvbGFiam91cm5hbC9yZXN1bHRzL3NvY19tb2RlbF9zdHJ1Y190d2l0IikKc3VtbWFyeShhbnMpCmBgYAoKU2ltaWxhciBlZmZlY3QgYmMgb2YgY291cnNlIHdlIGRpZCBub3QgYWRkIHRoZSBjb3ZhcmlhdGVzIHlldC4gQWxsIHN0cnVjdHVyYWwgZWZmZWN0cyBhcmUgc2lnbmlmaWNhbnQuIAoKYGBge3IsZXZhbD1GQUxTRX0KbXllZmZzMSA8LSBnZXRFZmZlY3RzKG15ZGF0YSkKbXllZmZzMSA8LSBpbmNsdWRlRWZmZWN0cyhteWVmZnMxLCBkZWdQbHVzKSAKbXllZmZzMSA8LSBpbmNsdWRlRWZmZWN0cyhteWVmZnMxLCB0cmFuc1RyaWFkcykKbXllZmZzMSA8LSBpbmNsdWRlRWZmZWN0cyhteWVmZnMxLCBhYnNEaWZmWCwgaW50ZXJhY3Rpb24xID0gImZvbGxvd2VycyIpCm15ZWZmczEgPC0gaW5jbHVkZUVmZmVjdHMobXllZmZzMSwgc2FtZVgsIGludGVyYWN0aW9uMSA9ICJkdXRjaCIpCm15ZWZmczEgPC0gaW5jbHVkZUVmZmVjdHMobXllZmZzMSwgYWJzRGlmZlgsIGludGVyYWN0aW9uMSA9ICJwdWJfZmlyc3QiKQojbXllZmZzMSA8LSBpbmNsdWRlRWZmZWN0cyhteWVmZnMxLCBzYW1lWCwgaW50ZXJhY3Rpb24xID0gInR3aXR0ZXJfZHVtIikKbXllZmZzMSA8LSBpbmNsdWRlRWZmZWN0cyhteWVmZnMxLCBzYW1lWCwgaW50ZXJhY3Rpb24xID0gImdlbmRlciIpCmBgYAoKYGBge3IsIGV2YWw9RkFMU0V9CihhbnMxIDwtIHNpZW5hMDcobXlBbGdvcml0aG0sIGRhdGEgPSBteWRhdGEsIGVmZmVjdHMgPSBteWVmZnMxLCBwcmV2QW5zID0gYW5zKSkKYGBgCgpgYGB7ciwgZXZhbD1GQUxTRX0KI1NhdmUgdGhlIGxhc3QgbW9kZWwgc2luY2UgaXQgaGFzIHRoZSBsb3dlc3QgbWF4aW11bSBjb252ZXJnZW5jZSByYXRpby4gCnNhdmUoYW5zMSwgZmlsZT0iL1VzZXJzL2FudXNjaGthL0RvY3VtZW50cy9sYWJqb3VybmFsL3Jlc3VsdHMvc29jX21vZGVsX2NvdjFfdHdpdCIpCmBgYAoKCmBgYHtyLCBlY2hvPUZBTFNFfQpsb2FkKCIvVXNlcnMvYW51c2Noa2EvRG9jdW1lbnRzL2xhYmpvdXJuYWwvcmVzdWx0cy9zb2NfbW9kZWxfY292MV90d2l0IikKc3VtbWFyeShhbnMxKQpgYGAKCgoKYGBge3IsZXZhbD1GQUxTRX0KbXllZmZzMiA8LSBnZXRFZmZlY3RzKG15ZGF0YSkKbXllZmZzMiA8LSBpbmNsdWRlRWZmZWN0cyhteWVmZnMyLCBkZWdQbHVzKSAKbXllZmZzMiA8LSBpbmNsdWRlRWZmZWN0cyhteWVmZnMyLCB0cmFuc1RyaWFkcykKbXllZmZzMiA8LSBpbmNsdWRlRWZmZWN0cyhteWVmZnMyLCBhbHRYLCBpbnRlcmFjdGlvbjEgPSAiZm9sbG93ZXJzIikKbXllZmZzMiA8LSBpbmNsdWRlRWZmZWN0cyhteWVmZnMyLCBzYW1lWCwgaW50ZXJhY3Rpb24xID0gImR1dGNoIikKbXllZmZzMiA8LSBpbmNsdWRlRWZmZWN0cyhteWVmZnMyLCBhYnNEaWZmWCwgaW50ZXJhY3Rpb24xID0gInB1Yl9maXJzdCIpCiNteWVmZnMyIDwtIGluY2x1ZGVFZmZlY3RzKG15ZWZmczIsIHNhbWVYLCBpbnRlcmFjdGlvbjEgPSAidHdpdHRlcl9kdW0iKQpteWVmZnMyIDwtIGluY2x1ZGVFZmZlY3RzKG15ZWZmczIsIHNhbWVYLCBpbnRlcmFjdGlvbjEgPSAiZ2VuZGVyIikKYGBgCgpgYGB7ciwgZXZhbD1GQUxTRX0KKGFuczIgPC0gc2llbmEwNyhteUFsZ29yaXRobSwgZGF0YSA9IG15ZGF0YSwgZWZmZWN0cyA9IG15ZWZmczIsIHByZXZBbnMgPSBhbnMxKSkKYGBgCgpgYGB7ciwgZXZhbD1GQUxTRX0KI1NhdmUgdGhlIGxhc3QgbW9kZWwgc2luY2UgaXQgaGFzIHRoZSBsb3dlc3QgbWF4aW11bSBjb252ZXJnZW5jZSByYXRpby4gCnNhdmUoYW5zMiwgZmlsZT0iL1VzZXJzL2FudXNjaGthL0RvY3VtZW50cy9sYWJqb3VybmFsL3Jlc3VsdHMvc29jX21vZGVsX2NvdjJfdHdpdCIpCmBgYAoKYGBge3IsIGVjaG89RkFMU0V9CmxvYWQoIi9Vc2Vycy9hbnVzY2hrYS9Eb2N1bWVudHMvbGFiam91cm5hbC9yZXN1bHRzL3NvY19tb2RlbF9jb3YyX3R3aXQiKQpzdW1tYXJ5KGFuczIpCmBgYAoKCiMgUlNpZW5hIERhdGEgU2NpZW5jZQoKCmBgYHtyfQpybShsaXN0PWxzKCkpCmBgYAoKYGBge3IsIGVjaG89RkFMU0V9CmxvYWQoIi9Vc2Vycy9hbnVzY2hrYS9Eb2N1bWVudHMvbGFiam91cm5hbC9kYXRhL2RhdGFfbmV0X2FycmF5LlJEYXRhIikKbG9hZCgiL1VzZXJzL2FudXNjaGthL0RvY3VtZW50cy9sYWJqb3VybmFsL2RhdGEvZGF0YWRlZl9kZi5SRGF0YSIpCmBgYAoKCmBgYHtyfQpzYXZlKGRhdGFkZWZfZGYsIGZpbGU9Ii9Vc2Vycy9hbnVzY2hrYS9Eb2N1bWVudHMvbGFiam91cm5hbC9kYXRhL2RhdGFkZWZfZGYuUkRhdGEiKQpgYGAKCmBgYHtyLCBldmFsPUZBTFNFfQojZGVwZW5kZW50CmRuZXQgPC0gc2llbmFEZXBlbmRlbnQoZG5ldF9hcnJheSkKCiMjIyBTdGVwIDE6IGRlZmluZSBkYXRhCiNnZW5kZXIKZ2VuZGVyIDwtIGFzLm51bWVyaWMoZGF0YWRlZl9kZiRnZW5kZXI9PSJmZW1hbGUiKQpnZW5kZXIgPC0gY29Db3ZhcihnZW5kZXIpCgojS2FyZGFzaGlhbiBJbmRleAoja2kgPC0gYXMubnVtZXJpYyhkYXRhZGVmX2RmJGtpKQoja2kgPC0gY29Db3ZhcihraSkKCiNFdGhuaWNpdHkKZHV0Y2ggPC0gYXMubnVtZXJpYyhkYXRhZGVmX2RmJGR1dGNoKQpkdXRjaCA8LSBjb0NvdmFyKGR1dGNoKQoKI1R3aXR0ZXIgZHVtbXkgYXMgY29udHJvbCB2YXJpYWJsZQp0d2l0dGVyX2R1bSA8LSAoZGF0YWRlZl9kZiR0d2l0dGVyX2R1bSkKdHdpdHRlcl9kdW0gPC0gY29Db3Zhcih0d2l0dGVyX2R1bSkKCiNUd2l0dGVyIGZvbGxvd2Vycwpmb2xsb3dlcnMgPC0gYXMubnVtZXJpYyhkYXRhZGVmX2RmJGZvbGxvd2VycykKZm9sbG93ZXJzIDwtIGNvQ292YXIoZm9sbG93ZXJzKQoKIyAjeWVhciBmaXJzdCBwdWIKIyBkYXRhX3N0YWZmX2NpdCAlPiUgZ3JvdXBfYnkoZ3NfaWQpICU+JQojICAgbXV0YXRlKHB1Yl9maXJzdCA9IG1pbih5ZWFyKSkgJT4lIAojICAgc2VsZWN0KGMoImdzX2lkIiwgInB1Yl9maXJzdCIpKSAlPiUKIyAgIGRpc3RpbmN0KGdzX2lkLCBwdWJfZmlyc3QsIC5rZWVwX2FsbCA9IFRSVUUpIC0+IGZpcnN0cHViX2RmMQojIAojIGRhdGFkZWZfZGYgPC0gbGVmdF9qb2luKGRhdGFkZWZfZGYsIGZpcnN0cHViX2RmMSkKIyAKIyAjaWYgbm8gcHVibGljYXRpb24geWV0LCBzZXQgcHViX2ZpcnN0IG9wIDIwMjMKIyBkYXRhZGVmX2RmICU+JSBtdXRhdGUocHViX2ZpcnN0ID0gcmVwbGFjZV9uYShwdWJfZmlyc3QsIDIwMjMpKSAtPiBkYXRhZGVmX2RmCgpwdWJfZmlyc3QgPC0gIGNvQ292YXIoZGF0YWRlZl9kZiRwdWJfZmlyc3QpCmBgYAoKYGBge3IsIGV2YWw9RkFMU0V9Cm15ZGF0YSA8LSBzaWVuYURhdGFDcmVhdGUoZG5ldCwgZ2VuZGVyLCBmb2xsb3dlcnMsIGR1dGNoLCBwdWJfZmlyc3QsIHR3aXR0ZXJfZHVtKQpgYGAKCmBgYHtyLCBldmFsPUZBTFNFfQojIyMgU3RlcCAyOiBjcmVhdGUgZWZmZWN0cyBzdHJ1Y3R1cmUKbXllZmYgPC0gZ2V0RWZmZWN0cyhteWRhdGEpCmVmZmVjdHNEb2N1bWVudGF0aW9uKG15ZWZmKQojIyMgU3RlcCAzOiBnZXQgaW5pdGlhbCBkZXNjcmlwdGlvbgpwcmludDAxUmVwb3J0KG15ZGF0YSwgbW9kZWxuYW1lID0gIi9Vc2Vycy9hbnVzY2hrYS9Eb2N1bWVudHMvbGFiam91cm5hbC9yZXN1bHRzL2RhdGFfcmVwb3J0X3R3aXQiKQpgYGAKCmBgYHtyLCBldmFsPUZBTFNFfQojIyMgU3RlcDQ6IHNwZWNpZnkgbW9kZWwKbXllZmYgPC0gaW5jbHVkZUVmZmVjdHMobXllZmYsIGRlZ1BsdXMpIApteWVmZiA8LSBpbmNsdWRlRWZmZWN0cyhteWVmZiwgdHJhbnNUcmlhZHMpCm15ZWZmIDwtIGluY2x1ZGVFZmZlY3RzKG15ZWZmLCBhYnNEaWZmWCwgaW50ZXJhY3Rpb24xID0gImZvbGxvd2VycyIpCmBgYAoKYGBge3IsIGV2YWw9RkFMU0V9CiMjIyBTdGVwNSBlc3RpbWF0ZQpteUFsZ29yaXRobSA8LSBzaWVuYUFsZ29yaXRobUNyZWF0ZShwcm9qbmFtZSA9ICJkYXRhX3JlcG9ydF90d2l0IikKKGFucyA8LSBzaWVuYTA3KG15QWxnb3JpdGhtLCBkYXRhID0gbXlkYXRhLCBlZmZlY3RzID0gbXllZmYpKQojICh0aGUgb3V0ZXIgcGFyZW50aGVzZXMgbGVhZCB0byBwcmludGluZyB0aGUgb2J0YWluZWQgcmVzdWx0IG9uIHRoZSBzY3JlZW4pIGlmIG5lY2Vzc2FyeSwgZXN0aW1hdGUKIyBmdXJ0aGVyCiMoYW5zIDwtIHNpZW5hMDcobXlBbGdvcml0aG0sIGRhdGEgPSBteWRhdGEsIGVmZmVjdHMgPSBteWVmZiwgcHJldkFucyA9IGFucykpCmBgYAoKYGBge3IsIGV2YWw9RkFMU0V9CnNhdmUoYW5zLCBmaWxlPSIvVXNlcnMvYW51c2Noa2EvRG9jdW1lbnRzL2xhYmpvdXJuYWwvcmVzdWx0cy9kYXRhX21vZGVsX3N0cnVjX3R3aXQiKQpgYGAKCmBgYHtyLCBlY2hvPUZBTFNFfQpsb2FkKCIvVXNlcnMvYW51c2Noa2EvRG9jdW1lbnRzL2xhYmpvdXJuYWwvcmVzdWx0cy9kYXRhX21vZGVsX3N0cnVjX3R3aXQiKQpzdW1tYXJ5KGFucykKYGBgCgpgYGB7cixldmFsPUZBTFNFfQpteWVmZmQxIDwtIGdldEVmZmVjdHMobXlkYXRhKQpteWVmZmQxIDwtIGluY2x1ZGVFZmZlY3RzKG15ZWZmZDEsIGRlZ1BsdXMpICNzb21lIHB1Ymxpc2ggYSBsb3QsIHNvbWUgbm90LiAoaW50ZXJwcmV0YXRpb246IHRhbGVudC9sdWNrPyApCm15ZWZmZDEgPC0gaW5jbHVkZUVmZmVjdHMobXllZmZkMSwgdHJhbnNUcmlhZHMpCm15ZWZmZDEgPC0gaW5jbHVkZUVmZmVjdHMobXllZmZkMSwgYWJzRGlmZlgsIGludGVyYWN0aW9uMSA9ICJmb2xsb3dlcnMiKQpteWVmZmQxIDwtIGluY2x1ZGVFZmZlY3RzKG15ZWZmZDEsIHNhbWVYLCBpbnRlcmFjdGlvbjEgPSAiZHV0Y2giKQpteWVmZmQxIDwtIGluY2x1ZGVFZmZlY3RzKG15ZWZmZDEsIGFic0RpZmZYLCBpbnRlcmFjdGlvbjEgPSAicHViX2ZpcnN0IikKI215ZWZmZDEgPC0gaW5jbHVkZUVmZmVjdHMobXllZmZkMSwgc2FtZVgsIGludGVyYWN0aW9uMSA9ICJ0d2l0dGVyX2R1bSIpCm15ZWZmZDEgPC0gaW5jbHVkZUVmZmVjdHMobXllZmZkMSwgc2FtZVgsIGludGVyYWN0aW9uMSA9ICJnZW5kZXIiKQooYW5zZDEgPC0gc2llbmEwNyhteUFsZ29yaXRobSwgZGF0YSA9IG15ZGF0YSwgZWZmZWN0cyA9IG15ZWZmZDEsIHByZXZBbnMgPSBhbnMpKQpgYGAKCgpgYGB7ciwgZXZhbD1GQUxTRX0KI1NhdmUgdGhlIGxhc3QgbW9kZWwgc2luY2UgaXQgaGFzIHRoZSBsb3dlc3QgbWF4aW11bSBjb252ZXJnZW5jZSByYXRpby4gCnNhdmUoYW5zZDEsIGZpbGU9Ii9Vc2Vycy9hbnVzY2hrYS9Eb2N1bWVudHMvbGFiam91cm5hbC9yZXN1bHRzL2RhdGFfbW9kZWxfY292MV90d2l0IikKYGBgCgpgYGB7ciwgZWNobz1GQUxTRX0KbG9hZCgiL1VzZXJzL2FudXNjaGthL0RvY3VtZW50cy9sYWJqb3VybmFsL3Jlc3VsdHMvZGF0YV9tb2RlbF9jb3YxX3R3aXQiKQpzdW1tYXJ5KGFuc2QxKQpgYGAKCmBgYHtyLCBldmFsPUZBTFNFfQpteWVmZmQyYSA8LSBnZXRFZmZlY3RzKG15ZGF0YSkKbXllZmZkMmEgPC0gaW5jbHVkZUVmZmVjdHMobXllZmZkMmEsIGRlZ1BsdXMpIApteWVmZmQyYSA8LSBpbmNsdWRlRWZmZWN0cyhteWVmZmQyYSwgdHJhbnNUcmlhZHMpCm15ZWZmZDJhIDwtIGluY2x1ZGVFZmZlY3RzKG15ZWZmZDJhLCBhbHRYLCBpbnRlcmFjdGlvbjEgPSAiZm9sbG93ZXJzIikKKGFuc2QyYSA8LSBzaWVuYTA3KG15QWxnb3JpdGhtLCBkYXRhID0gbXlkYXRhLCBlZmZlY3RzID0gbXllZmZkMiwgcHJldkFucyA9IGFuc2QxKSkKYGBgCgpgYGB7ciwgZXZhbD1GQUxTRX0KI1NhdmUgdGhlIGxhc3QgbW9kZWwgc2luY2UgaXQgaGFzIHRoZSBsb3dlc3QgbWF4aW11bSBjb252ZXJnZW5jZSByYXRpby4gCnNhdmUoYW5zZDJhLCBmaWxlPSIvVXNlcnMvYW51c2Noa2EvRG9jdW1lbnRzL2xhYmpvdXJuYWwvcmVzdWx0cy9kYXRhX21vZGVsX2NvdjJhX3R3aXQiKQpgYGAKCmBgYHtyLCBlY2hvPUZBTFNFfQpsb2FkKCIvVXNlcnMvYW51c2Noa2EvRG9jdW1lbnRzL2xhYmpvdXJuYWwvcmVzdWx0cy9kYXRhX21vZGVsX2NvdjJhX3R3aXQiKQpzdW1tYXJ5KGFuc2QyYSkKYGBgCgpgYGB7cixldmFsPUZBTFNFfQpteWVmZmQyIDwtIGdldEVmZmVjdHMobXlkYXRhKQpteWVmZmQyIDwtIGluY2x1ZGVFZmZlY3RzKG15ZWZmZDIsIGRlZ1BsdXMpIApteWVmZmQyIDwtIGluY2x1ZGVFZmZlY3RzKG15ZWZmZDIsIHRyYW5zVHJpYWRzKQpteWVmZmQyIDwtIGluY2x1ZGVFZmZlY3RzKG15ZWZmZDIsIGFsdFgsIGludGVyYWN0aW9uMSA9ICJmb2xsb3dlcnMiKQpteWVmZmQyIDwtIGluY2x1ZGVFZmZlY3RzKG15ZWZmZDIsIHNhbWVYLCBpbnRlcmFjdGlvbjEgPSAiZHV0Y2giKQpteWVmZmQyIDwtIGluY2x1ZGVFZmZlY3RzKG15ZWZmZDIsIGFic0RpZmZYLCBpbnRlcmFjdGlvbjEgPSAicHViX2ZpcnN0IikKI215ZWZmZDIgPC0gaW5jbHVkZUVmZmVjdHMobXllZmZkMiwgc2FtZVgsIGludGVyYWN0aW9uMSA9ICJ0d2l0dGVyX2R1bSIpCm15ZWZmZDIgPC0gaW5jbHVkZUVmZmVjdHMobXllZmZkMiwgc2FtZVgsIGludGVyYWN0aW9uMSA9ICJnZW5kZXIiKQooYW5zZDIgPC0gc2llbmEwNyhteUFsZ29yaXRobSwgZGF0YSA9IG15ZGF0YSwgZWZmZWN0cyA9IG15ZWZmZDIsIHByZXZBbnMgPSBhbnNkMSkpCmBgYAoKYGBge3IsIGV2YWw9RkFMU0V9CiNTYXZlIHRoZSBsYXN0IG1vZGVsIHNpbmNlIGl0IGhhcyB0aGUgbG93ZXN0IG1heGltdW0gY29udmVyZ2VuY2UgcmF0aW8uIApzYXZlKGFuc2QyLCBmaWxlPSIvVXNlcnMvYW51c2Noa2EvRG9jdW1lbnRzL2xhYmpvdXJuYWwvcmVzdWx0cy9kYXRhX21vZGVsX2NvdjJfdHdpdCIpCmBgYAoKYGBge3IsIGVjaG89RkFMU0V9CmxvYWQoIi9Vc2Vycy9hbnVzY2hrYS9Eb2N1bWVudHMvbGFiam91cm5hbC9yZXN1bHRzL2RhdGFfbW9kZWxfY292Ml90d2l0IikKc3VtbWFyeShhbnNkMikKYGBgCgo=