Data
In the present study, data will be webscraped from the internet to
answer the research question. The study will focus on scientists working
at the Sociology department and scientists working at the Data Science
department of Radboud University. Information on publications,
co-authorship and citations will be scraped from Google Scholar using
the Scholar package in R. Social media participation will be expressed
using the Kardashian Index, which compares the Twitter followers with
number of citations of academics (Hall, 2014). In order to calculate
these, the twitteR package in R is used to extract Twitter user
information of scholars of the departments. For each full name, the
first user scraped is saved. By eye-balling, twitter users with a high
amount were checked. In some cases, the match between full name and
Twitter username was not made correctly. In those instances, this was
corrected by hand. Using the number of followers and the citations
scraped from Google Scholar, the Kardashian Index is calculated.
The control variable Twitter Dummy was added to indicate whether the
scholar has Twitter or not. Furthermore, the variable Dutch shows the
ethnicity of the staff member. Ethnicity was scraped using the
Achternamenbank. In case of a typical Dutch last name, the staff member
got a score one on the dummy Dutch. In other cases, the scholar scores a
zero. This means that all last names that are not Dutch are taken
together as one category, not distinguishing between (Non-)Western
ethnic background. Similarly to ethnicity, the Meertens namenbank was
used to determine the gender of the respondent. In case of a first name
that is more often used for women than for men, a scholar scores a zero
on the dummy gender. In case of a first name that is more often used for
men, the scholar scores a one on the dummy.
Data will be collected for two different times, and then the
evolution of the networks of Sociology and Data Science will be
compared.
Summarized, it can be expressed as follows:
Nodes The scientists of both departments mentioned
(thus focusing on the micro-level)
Edges Co-authorship between these scientists
(yes/no)
Dependent variable Not exactly sure yet. Density of
the network. Homophily? But I don’t have everyone’s research
interests.
Independent variable Kardashian Index of the
scientists. To measure the influence effects, a model will be analyzed
including the Kardashian Index as a dependent variable.
Control variables Gender and age.
Method
In order to study the networks, the RSiena package will be used.
SIENA is able to analyze longitudinal data simulating network outcomes
based on the perspective of the nodes (Ripley, Snijders, Boda, Voros
& Preciado, 2022) TO WHAT EXTENT DO I EXPLAIN THIS? First, the
evaluation effects will be studied, which focuses on which ties are
present.
References
Hall, N. (2014). The Kardashian index: A measure of discrepant social
media profile for scientists. Genome Biology, 15(7), 424. https://doi.org/10.1186/s13059-014-0424-0
Ruth M. Ripley, Tom A.B. Snijders, Zs ́ofia Boda, Andr ́as V ̈or ̈os,
and Paulina Preciado, 2022. Manual for SIENA version 4.0 (version August
11, 2022). Oxford: University of Oxford, Department of Statistics;
Nuffield College.
LS0tCnRpdGxlOiAiRGF0YSAmIE1ldGhvZCIKYXV0aG9yOiAiQW51c2Noa2EgUGVlbGVuIgpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiCm91dHB1dDogaHRtbF9kb2N1bWVudAplZGl0b3Jfb3B0aW9uczogCiAgbWFya2Rvd246IAogICAgd3JhcDogNzIKLS0tCgpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KGVjaG8gPSBUUlVFKQpgYGAKCmBgYHtyLCBnbG9iYWxzZXR0aW5ncywgZWNobz1GQUxTRSwgd2FybmluZz1GQUxTRSwgcmVzdWx0cz0naGlkZSd9CmxpYnJhcnkoa25pdHIpCgprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUpCm9wdHNfY2h1bmskc2V0KHRpZHkub3B0cz1saXN0KHdpZHRoLmN1dG9mZj0xMDApLHRpZHk9VFJVRSwgd2FybmluZyA9IEZBTFNFLCBtZXNzYWdlID0gRkFMU0UsY29tbWVudCA9ICIjPiIsIGNhY2hlPVRSVUUsIGNsYXNzLnNvdXJjZT1jKCJ0ZXN0IiksIGNsYXNzLm91dHB1dD1jKCJ0ZXN0MiIpKQpvcHRpb25zKHdpZHRoID0gMTAwKQpyZ2w6OnNldHVwS25pdHIoKQoKCmNvbG9yaXplIDwtIGZ1bmN0aW9uKHgsIGNvbG9yKSB7c3ByaW50ZigiPHNwYW4gc3R5bGU9J2NvbG9yOiAlczsnPiVzPC9zcGFuPiIsIGNvbG9yLCB4KSB9CmBgYAoKYGBge3Iga2xpcHB5LCBlY2hvPUZBTFNFLCBpbmNsdWRlPVRSVUV9CmtsaXBweTo6a2xpcHB5KHBvc2l0aW9uID0gYygndG9wJywgJ3JpZ2h0JykpCiNrbGlwcHk6OmtsaXBweShjb2xvciA9ICdkYXJrcmVkJykKI2tsaXBweTo6a2xpcHB5KHRvb2x0aXBfbWVzc2FnZSA9ICdDbGljayB0byBjb3B5JywgdG9vbHRpcF9zdWNjZXNzID0gJ0RvbmUnKQpgYGAKCi0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQoKIyBEYXRhCgo8YnI+CgpJbiB0aGUgcHJlc2VudCBzdHVkeSwgZGF0YSB3aWxsIGJlIHdlYnNjcmFwZWQgZnJvbSB0aGUgaW50ZXJuZXQgdG8KYW5zd2VyIHRoZSByZXNlYXJjaCBxdWVzdGlvbi4gVGhlIHN0dWR5IHdpbGwgZm9jdXMgb24gc2NpZW50aXN0cyB3b3JraW5nCmF0IHRoZSBTb2Npb2xvZ3kgZGVwYXJ0bWVudCBhbmQgc2NpZW50aXN0cyB3b3JraW5nIGF0IHRoZSBEYXRhIFNjaWVuY2UKZGVwYXJ0bWVudCBvZiBSYWRib3VkIFVuaXZlcnNpdHkuIEluZm9ybWF0aW9uIG9uIHB1YmxpY2F0aW9ucywKY28tYXV0aG9yc2hpcCBhbmQgY2l0YXRpb25zIHdpbGwgYmUgc2NyYXBlZCBmcm9tIEdvb2dsZSBTY2hvbGFyIHVzaW5nCnRoZSBTY2hvbGFyIHBhY2thZ2UgaW4gUi4gU29jaWFsIG1lZGlhIHBhcnRpY2lwYXRpb24gd2lsbCBiZSBleHByZXNzZWQKdXNpbmcgdGhlIEthcmRhc2hpYW4gSW5kZXgsIHdoaWNoIGNvbXBhcmVzIHRoZSBUd2l0dGVyIGZvbGxvd2VycyB3aXRoCm51bWJlciBvZiBjaXRhdGlvbnMgb2YgYWNhZGVtaWNzIChIYWxsLCAyMDE0KS4gCkluIG9yZGVyIHRvIGNhbGN1bGF0ZSB0aGVzZSwgdGhlIHR3aXR0ZVIgcGFja2FnZSBpbiBSIGlzIHVzZWQgdG8gZXh0cmFjdCBUd2l0dGVyIHVzZXIKaW5mb3JtYXRpb24gb2Ygc2Nob2xhcnMgb2YgdGhlIGRlcGFydG1lbnRzLiBGb3IgZWFjaCBmdWxsIG5hbWUsIHRoZSBmaXJzdCB1c2VyIHNjcmFwZWQgaXMgc2F2ZWQuIEJ5IGV5ZS1iYWxsaW5nLCB0d2l0dGVyIHVzZXJzIHdpdGggYSBoaWdoIGFtb3VudCB3ZXJlIGNoZWNrZWQuIEluIHNvbWUgY2FzZXMsIHRoZSBtYXRjaCBiZXR3ZWVuIGZ1bGwgbmFtZSBhbmQgVHdpdHRlciB1c2VybmFtZSB3YXMgbm90IG1hZGUgY29ycmVjdGx5LiBJbiB0aG9zZSBpbnN0YW5jZXMsIHRoaXMgd2FzIGNvcnJlY3RlZCBieSBoYW5kLiBVc2luZyB0aGUgbnVtYmVyIG9mCmZvbGxvd2VycyBhbmQgdGhlIGNpdGF0aW9ucyBzY3JhcGVkIGZyb20gR29vZ2xlIFNjaG9sYXIsIHRoZSBLYXJkYXNoaWFuIEluZGV4IGlzIGNhbGN1bGF0ZWQuIAoKPGJyPiAKClRoZSBjb250cm9sIHZhcmlhYmxlIFR3aXR0ZXIgRHVtbXkgd2FzIGFkZGVkIHRvIGluZGljYXRlIHdoZXRoZXIgdGhlIHNjaG9sYXIgaGFzIFR3aXR0ZXIgb3Igbm90LiBGdXJ0aGVybW9yZSwgdGhlIHZhcmlhYmxlIER1dGNoIHNob3dzIHRoZSBldGhuaWNpdHkgb2YgdGhlIHN0YWZmIG1lbWJlci4gRXRobmljaXR5IHdhcyBzY3JhcGVkIHVzaW5nIHRoZSBBY2h0ZXJuYW1lbmJhbmsuIEluIGNhc2Ugb2YgYSB0eXBpY2FsIER1dGNoIGxhc3QgbmFtZSwgdGhlIHN0YWZmIG1lbWJlciBnb3QgYSBzY29yZSBvbmUgb24gdGhlIGR1bW15IER1dGNoLiBJbiBvdGhlciBjYXNlcywgdGhlIHNjaG9sYXIgc2NvcmVzIGEgemVyby4gVGhpcyBtZWFucyB0aGF0IGFsbCBsYXN0IG5hbWVzIHRoYXQgYXJlIG5vdCBEdXRjaCBhcmUgdGFrZW4gdG9nZXRoZXIgYXMgb25lIGNhdGVnb3J5LCBub3QgZGlzdGluZ3Vpc2hpbmcgYmV0d2VlbiAoTm9uLSlXZXN0ZXJuIGV0aG5pYyBiYWNrZ3JvdW5kLiBTaW1pbGFybHkgdG8gZXRobmljaXR5LCB0aGUgTWVlcnRlbnMgbmFtZW5iYW5rIHdhcyB1c2VkIHRvIGRldGVybWluZSB0aGUgZ2VuZGVyIG9mIHRoZSByZXNwb25kZW50LiBJbiBjYXNlIG9mIGEgZmlyc3QgbmFtZSB0aGF0IGlzIG1vcmUgb2Z0ZW4gdXNlZCBmb3Igd29tZW4gdGhhbiBmb3IgbWVuLCBhIHNjaG9sYXIgc2NvcmVzIGEgemVybyBvbiB0aGUgZHVtbXkgZ2VuZGVyLiBJbiBjYXNlIG9mIGEgZmlyc3QgbmFtZSB0aGF0IGlzIG1vcmUgb2Z0ZW4gdXNlZCBmb3IgbWVuLCB0aGUgc2Nob2xhciBzY29yZXMgYSBvbmUgb24gdGhlIGR1bW15LiAKCgoKRGF0YSB3aWxsIGJlCmNvbGxlY3RlZCBmb3IgdHdvIGRpZmZlcmVudCB0aW1lcywgYW5kIHRoZW4gdGhlIGV2b2x1dGlvbiBvZiB0aGUKbmV0d29ya3Mgb2YgU29jaW9sb2d5IGFuZCBEYXRhIFNjaWVuY2Ugd2lsbCBiZSBjb21wYXJlZC4KClN1bW1hcml6ZWQsIGl0IGNhbiBiZSBleHByZXNzZWQgYXMgZm9sbG93czoKCioqTm9kZXMqKiBUaGUgc2NpZW50aXN0cyBvZiBib3RoIGRlcGFydG1lbnRzIG1lbnRpb25lZCAodGh1cyBmb2N1c2luZyBvbgp0aGUgbWljcm8tbGV2ZWwpCgoqKkVkZ2VzKiogQ28tYXV0aG9yc2hpcCBiZXR3ZWVuIHRoZXNlIHNjaWVudGlzdHMgKHllcy9ubykKCioqRGVwZW5kZW50IHZhcmlhYmxlKiogTm90IGV4YWN0bHkgc3VyZSB5ZXQuIERlbnNpdHkgb2YgdGhlIG5ldHdvcmsuCkhvbW9waGlseT8gQnV0IEkgZG9uJ3QgaGF2ZSBldmVyeW9uZSdzIHJlc2VhcmNoIGludGVyZXN0cy4KCioqSW5kZXBlbmRlbnQgdmFyaWFibGUqKiBLYXJkYXNoaWFuIEluZGV4IG9mIHRoZSBzY2llbnRpc3RzLiBUbyBtZWFzdXJlCnRoZSBpbmZsdWVuY2UgZWZmZWN0cywgYSBtb2RlbCB3aWxsIGJlIGFuYWx5emVkIGluY2x1ZGluZyB0aGUgS2FyZGFzaGlhbgpJbmRleCBhcyBhIGRlcGVuZGVudCB2YXJpYWJsZS4KCioqQ29udHJvbCB2YXJpYWJsZXMqKiBHZW5kZXIgYW5kIGFnZS4KCjxicj4KCiMgTWV0aG9kCgpJbiBvcmRlciB0byBzdHVkeSB0aGUgbmV0d29ya3MsIHRoZSBSU2llbmEgcGFja2FnZSB3aWxsIGJlIHVzZWQuIFNJRU5BCmlzIGFibGUgdG8gYW5hbHl6ZSBsb25naXR1ZGluYWwgZGF0YSBzaW11bGF0aW5nIG5ldHdvcmsgb3V0Y29tZXMgYmFzZWQKb24gdGhlIHBlcnNwZWN0aXZlIG9mIHRoZSBub2RlcyAoUmlwbGV5LCBTbmlqZGVycywgQm9kYSwgVm9yb3MgJgpQcmVjaWFkbywgMjAyMikgVE8gV0hBVCBFWFRFTlQgRE8gSSBFWFBMQUlOIFRISVM/IEZpcnN0LCB0aGUgZXZhbHVhdGlvbgplZmZlY3RzIHdpbGwgYmUgc3R1ZGllZCwgd2hpY2ggZm9jdXNlcyBvbiB3aGljaCB0aWVzIGFyZSBwcmVzZW50LgoKPGJyPiAKCgoKCgoKIyBSZWZlcmVuY2VzIAoKSGFsbCwgTi4gKDIwMTQpLiBUaGUgS2FyZGFzaGlhbiBpbmRleDogQSBtZWFzdXJlIG9mCmRpc2NyZXBhbnQgc29jaWFsIG1lZGlhIHByb2ZpbGUgZm9yIHNjaWVudGlzdHMuIEdlbm9tZSBCaW9sb2d5LCAxNSg3KSwKNDI0LiA8aHR0cHM6Ly9kb2kub3JnLzEwLjExODYvczEzMDU5LTAxNC0wNDI0LTA+CgpSdXRoIE0uIFJpcGxleSwgVG9tIEEuQi4gU25pamRlcnMsIFpzIMyBb2ZpYSBCb2RhLCBBbmRyIMyBYXMgViDMiG9yIMyIb3MsCmFuZCBQYXVsaW5hIFByZWNpYWRvLCAyMDIyLiBNYW51YWwgZm9yIFNJRU5BIHZlcnNpb24gNC4wICh2ZXJzaW9uIEF1Z3VzdAoxMSwgMjAyMikuIE94Zm9yZDogVW5pdmVyc2l0eSBvZiBPeGZvcmQsIERlcGFydG1lbnQgb2YgU3RhdGlzdGljczsKTnVmZmllbGQgQ29sbGVnZS4K